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Abstract

Algorithmic tools are increasingly used in hiring to improve fairness and diversity, often by
enforcing constraints such as gender-balanced candidate shortlists. However, we show theoretically
and empirically that enforcing equal representation at the shortlist stage does not necessarily
translate into more diverse final hires, even when there is no gender bias in the hiring stage.
We identify a crucial factor influencing this outcome: the correlation between the algorithm’s
screening criteria and the human hiring manager’s evaluation criteria—higher correlation leads
to lower diversity in final hires. Using a large-scale empirical analysis of nearly 800,000 job
applications across multiple technology firms, we find that enforcing equal shortlists yields
limited improvements in hire diversity when the algorithmic screening closely mirrors the hiring
manager’s preferences. We propose a complementary algorithmic approach designed explicitly
to diversify shortlists by selecting candidates likely to be overlooked by managers, yet still
competitive according to their evaluation criteria. Empirical simulations show that this approach
significantly enhances gender diversity in final hires without substantially compromising hire
quality. These findings highlight the importance of algorithmic design choices in achieving
organizational diversity goals and provide actionable guidance for practitioners implementing
fairness-oriented hiring algorithms.



1 Introduction

In recent years, organizations have widely adopted various policies to increase workforce diversity (Shi

et al. 2018). A popular policy is to diversify candidate shortlists or interview pools—often referred

to as soft affirmative action policies. Unlike hard affirmative action policies such as hiring quotas,

which are explicitly prohibited by US employment law, soft policies aim only to increase minority

representation in the initial interview stage without imposing quotas on final hires (Civil Rights Act

of 1974; Schuck 2002). Prominent examples of soft affirmative action policies include the NFL’s

Rooney Rule (NFL Operations 2003), which requires interviewing at least one ethnic minority

candidate for head coaching positions, and similar policies adopted by major tech firms such as

Facebook (2021), Pinterest (2015), and Patreon (2017).

With the increasing use of algorithms in hiring, these diversity policies are frequently im-

plemented as algorithmic fairness constraints. For instance, LinkedIn Recruiter has deployed

fairness-aware ranking algorithms aimed at improving gender diversity among candidates presented

to recruiters (Geyik et al. 2019). However, presenting more diverse candidate sets does not nec-

essarily translate into greater diversity in hiring outcomes. LinkedIn’s own analyses highlight

uncertainty regarding whether improved gender representation in candidate recommendations leads

to measurable improvements in outcomes, such as candidate contacts or interview requests (Geyik

et al. 2019). Ultimately, algorithmic recommendations are integrated with human decisions, and the

final hiring outcomes depend on human managers or recruiters.

Previous laboratory studies have indicated that the effectiveness of fairness constraints can

vary significantly across job types (Sühr et al. 2021; Peng et al. 2019). When these policies fail,

conventional wisdom typically attributes their ineffectiveness to human biases. While human biases

undoubtedly affect outcomes, other important factors influencing fairness constraints’ effectiveness

remain underexplored.

To systematically explore these factors, we propose and analyze a two-stage hiring model

comprising algorithmic screening followed by human hiring decisions. The model considers a hiring

scenario with a higher number of male applicants than female applicants, reflecting conditions typical

in firms using diversity policies. In the first stage, a screening algorithm shortlists candidates and

applies an equal selection constraint, such that an equal number of men and women are shortlisted.
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A hiring manager then evaluates the shortlisted candidates and hires the best candidates based on

her own assessments.

Analytically solving this model reveals a crucial insight: the effectiveness of the equal selection

constraint diminishes as the correlation between the screening algorithm’s evaluation criteria and

the hiring manager’s evaluation criteria increases. Moreover, the expected quality of hires also

decreases as the correlation increases. In other words, the better the screening algorithm matches

the manager’s preferences, the lower the expected quality of hires and the less effective the equal

selection constraint becomes. Based on this insight, we propose a complementary algorithm designed

explicitly to select candidates likely to be overlooked by hiring managers yet still be competitive

according to their evaluation criteria.

We empirically validate our theoretical predictions on hire diversity using extensive hiring

data from eight technology firms, including nearly 800,000 applicants and over 3,600 job postings.

Through counterfactual simulations, we demonstrate two key findings:

1. Consistent with our theoretical predictions, enforcing equal selection constraints in the shortlist

does not consistently improve hiring diversity and may have negligible effects in some scenarios.

2. The constraint’s effectiveness varies substantially across job types, driven primarily by differ-

ences in the correlation between algorithmic screening and managerial assessment criteria.

Furthermore, when we benchmark our complementary algorithm against other traditional fairness

constraints, we find it substantially more effective in improving workforce diversity without significant

trade-offs in candidate quality.

Our Contributions. We theoretically and empirically show that the equal selection constraint,

a common algorithmic fairness constraint, fails to increase workforce diversity when algorithmic

screening evaluations correlate strongly with human hiring evaluations. To address this, we introduce

and validate a complementary screening algorithm designed specifically to reduce these correlations,

significantly improving hire diversity outcomes with minimal loss in candidate quality across various

hiring contexts. Our study contributes to the literature on algorithmic fairness in hiring pipelines in

two key ways. First, we provide a theoretical characterization of when equal shortlist constraints

effectively enhance diversity, emphasizing the critical role of correlation between screening and hiring

evaluations. Second, we empirically validate this theoretical insight and introduce a complementary
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algorithmic design that significantly improves diversity outcomes in practice.

The remainder of the paper proceeds as follows. Section 2 reviews related literature. Section 3

describes the theoretical model, discusses our findings, and introduces our complementary algorithmic

design. Section 4 outlines the empirical approach and data. Section 5 presents our empirical findings,

and Section 6 concludes with implications for practice and future research directions.

2 Related Work

This paper is related to the algorithmic fairness literature, which studies the design and evaluation

of algorithms aimed to mitigate bias and improve fairness in algorithmic decision-making (Dwork,

Hardt, et al. 2012; Zemel et al. 2013; Hardt et al. 2016; Zafar, Valera, Gomez Rodriguez, et al.

2017; Zafar, Valera, Rodriguez, et al. 2017; Geyik et al. 2019; Blum et al. 2022). In this literature,

two broad notions of fairness exist: individual fairness, which requires that similar individuals are

treated similarly by the algorithm; and group fairness, which requires that some statistic of interest

is on average equal across groups along the lines of protected attributes.1 Within group fairness,

different definitions of fairness exist, such as demographic (or statistical) parity, equal selection,

equal false-positive rates, equal false-negative rates, equal odds, equal accuracy rates, and equal

positive predictive values across groups (see Table 7 for precise definitions and Mitchell et al. (2021)

for a review). Except in trivial cases, it is impossible to simultaneously satisfy all fairness criteria

(Chouldechova 2017; Kleinberg, Mullainathan, et al. 2016), so the choice of fairness criteria depends

on the context and is often informed by laws, policies, and desired outcomes.

Fairness constraints are not only used to mitigate any potential bias in the algorithm but can

also be used as a tool to inscribe diversity policies that proactively correct for pre-existing societal

and systemic bias. For example, in the hiring context, prior studies have shown that women are

deterred from applying to male-dominated jobs because they anticipate discrimination in the hiring

process (Storvik and Schøne 2008; Brands and Fernandez-Mateo 2017; Bapna et al. 2021). To

address such pre-existing disparities, firms have adopted hiring diversity policies that increase or

equalize the representation of minorities in the shortlist (Shi et al. 2018).2 As hiring becomes

1Protected attributes are attributes that are protected under the law against discrimination. U.S. federal law
prohibits employment discrimination based on race, gender, religion, national origin, age, disability, sexual orientation,
and pregnancy.

2For example, the diversity hiring policies implemented in high-tech firms such as Facebook, Pinterest, Patreon,
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increasingly aided by algorithms, these diversity policies are implemented as algorithmic fairness

constraints. Of particular interest is the equal selection fairness constraint (Khalili et al. 2021; Jiang

et al. 2023), which requires positive outcomes to be equal across groups regardless of the proportions

in the baseline population. For example, in algorithmic hiring, an equal selection constraint might

require that the screening algorithm shortlists an equal number of men and women, regardless of

the proportion of women in the applicant pool.3

Although these constraints guarantee fairness on algorithmic outputs, when these outputs are

used as inputs in downstream decisions, the overall effects of these constraints in either mitigating

bias or increasing diversity are not guaranteed. An emerging line of literature studies the efficacy of

algorithmic fairness constraints in “pipelines”—i.e., settings where decisions are made sequentially.

Bower et al. (2017) analyze the equal opportunity constraint in a pipeline setting and shows that

individually fair algorithms, when assembled sequentially, do not necessarily guarantee fair final

outcomes with respect to equal opportunity. Similarly, Dwork and Ilvento (2019) analyze the

individual fairness constraint and conditional parity constraints in composition settings and show

that individually fair algorithms, when composed together, do not necessarily guarantee fair final

outcomes. Blum et al. (2022) propose a fair algorithm that satisfies the equality of opportunity

constraint across the entire selection pipeline. Our main contribution to this algorithmic fairness

and fair pipelines literature is that we study the equal selection constraint in a hiring pipeline

setting, where decisions are made sequentially. We propose an algorithmic design to increase the

effectiveness of the equal selection constraint and demonstrate its effectiveness using empirical hiring

data.

Outside the algorithmic fairness literature, our work is also related to a number of theoretical

papers that study bias and fairness in hiring settings. Kleinberg and Raghavan (2018) provide a

theoretical hiring model in the presence of implicit bias and show that the Rooney Rule can increase

the proportion of minority hires while also increasing the payoff of the decision-maker (see also Celis

et al. (2021)). Fershtman and Pavan (2021) present a model to study the effect of “soft” affirmative

and LinkedIn Recruiter’s ranking algorithm (Geyik et al. 2019) all seek to increase the representation of minorities in
the shortlist.

3This is in contrast to demographic parity, another common fairness constraint in the algorithmic hiring setting,
which requires the proportion of positive outcomes across groups to be equal to the proportions in a baseline population
(Raghavan et al. 2020). For example, in algorithmic screening, demographic parity may require that the proportion
of women on the shortlist be equal to the proportion of women in the applicant pool. Whereas demographic parity
ensures that bias is not introduced in the hiring process, it does not correct for pre-existing disparities.
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action policies that increase the proportion of minority candidates in the candidate pool. Lee and

Waddell (2021) study a 2-stage hiring setting with agents with different levels of interest in diversity

and show that this difference can lower the likelihood of highly qualified candidates being hired

even when they enhance diversity. Our contribution to this theoretical hiring literature is that we

explicitly model the correlation in assessment criteria between the screener and the hiring manager,

which we show to be a key determinant of the effectiveness of a common diversity policy.

3 Theoretical Framework and Implications

3.1 Model Setup

Consider a hiring context with na applicants, each characterized by their group membership

g ∈ {m, f}, where m represents the majority group (male) and f the minority group (female). The

female proportion among applicants is pa < 0.5. Each candidate also has an unobservable true

quality Q, which is measurable only post-hire (e.g., via job performance).

Two-Stage Hiring Process. The hiring involves two sequential stages:

1. Algorithmic Screening : An algorithm assigns each candidate a screening score QS and shortlists

candidates exceeding a threshold. To enhance diversity, the algorithm implements an equal

selection constraint, shortlisting an equal number of male and female candidates by setting

gender-specific thresholds (τSm, τSf ). Let ps be the proportion of women in the shortlist.

2. Human Evaluation: The shortlisted candidates are evaluated by a hiring manager who assigns

a score (QH) and hires those exceeding a common threshold (τH), independent of gender.4

Let ph be the proportion of women in the hired pool.

Table 1 summarizes these selection rules.

Quality Scores Model. We model the scores (Q,QS , QH) as following a multivariate Gaussian

4Indeed implementing a constraint on the hiring manager to hire an equal number of men and women would
trivially increase the gender diversity of hires; however, such a constraint on the hiring manager would be considered a
hiring quota, which is prohibited under US Employment Law (Title VII, Civil Rights Act of 1974). This is the reason
many diversity-focused hiring policies (e.g., Rooney Rule, Facebook’s hiring policy (Huet 2017), LinkedIn’s screening
algorithm (Geyik et al. 2019)) target the initial screening decision rather than the final hiring decision.
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Table 1: Stages of the hiring model

Stage Constraint Selection Rule

(1)
Equal Selection

P(g = f | yS = 1) = P(g = m | yS = 1) yS =


1 if QS > τSm, g = m

1 if QS > τSf , g = f

0 otherwise

(2) None yH =

{
1 if QH > τH

0 otherwise

Notes: yS and yH are binary indicators of selection in the screening and hiring stages, respectively. Gender-
specific thresholds τS

m and τS
f ensure equal selection, while τH is gender-neutral.

Figure 1: The correlation structure between Q,QS , QH

QS

Q

QH

θS θH

θ

Notes: This figure illustrated the correlation structure between the candidates’ true quality (Q), the algorithm’s
quality estimate (QS ), and the hiring manager’s quality estimate (QH). The θ values represent the correlations
between these scores.

distribution, potentially with distinct distributions for male and female candidates:

(Qm, QS
m, QH

m) ∼ N


[
0 0 0

]
,


1 θS θH

θS 1 θ

θH θ 1


 (3.1)

(Qf , Q
S
f , Q

H
f ) ∼ N


[
α α+ βS α+ βH

]
,


1 θS − δS θH − δH

θS − δS 1 θ − δ

θH − δH θ − δ 1


 (3.2)

Without loss of generality, male candidates have a mean vector of zero, and female candidates may

differ by parameters (α, βS , βH). The correlation structure is defined by a positive semi-definite

covariance matrix with parameters (θ, θS , θH). The correlation structure may differ by gender, where

the difference is parameterized by (δ, δS , δH). For now, we assume that (δ, δS , δH) = 0. Table 2

summarizes all model parameters and assumptions, and Figure 1 provides a visual representation of
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Table 2: Model parameters, definitions, and assumptions

Parameter Definition Assumption

θS
Correlation between Q and QS ; measure of how
good the screening algorithm is at predicting true
quality

θS ∈ [0, 1)

θH
Correlation between Q and QH ; measure of how
good the hiring manager is at predicting true qual-
ity

θH ∈ [0, 1)

θ
Correlation between QS and QH ; degree to which
the screening algorithm and the hiring manager
agree in their quality assessment

θ ∈ [0, 1)

τS
Quality cutoff for the screener to pass the candi-
date to the next round (QS ≥ τS)

—

τH
Quality cutoff for the hiring manager to hire a
candidate (QH ≥ τH)

—

δ := θm − θf
Gender difference in correlation between the
screener and the hiring manager

δ = 0 (for now)

δS := θSm − θSf Predictive gender bias of screening scores δS = 0

δH := θHm − θHf Predictive gender bias of the hiring manager scores δH = 0

α
Mean quality difference between men and women;
positive α implies women have higher mean quality
than men

α = 0. We extend the model
in Appendix A.5

βS Systematic gender bias of screening scores βS = 0

βH Systematic gender bias of hiring manager scores βH = 0

the quality score model.

3.2 Theoretical results

We analyze how the gender diversity of hires, ph, and the expected quality of hires, E[Qh], vary as

functions of the firm’s design parameters with respect to the screening algorithm—θ, δ, θS .5

5Not all model parameters are design parameters that can be controlled by the firm. For a given candidate, Q
is fixed, and estimation of QH is delegated to the hiring manager, which fixes θH . The firm has control over the
screening algorithm, and thus how QS is estimated. Therefore, the design parameters that the firm can control are θS

(i.e., how good the screening algorithm is in predicting true quality), and θ (how similar the screening algorithm is
compared to the hiring manager in assessing quality).
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3.2.1 Effects on hire diversity

Proposition 1. The effectiveness of the equal selection constraint (ph) decreases as the corre-

lation (θ) between algorithmic scores and hiring manager scores increases.

Corollary. When screening and hiring manager scores are perfectly uncorrelated (θ = 0), the equal

selection constraint effectively balances the gender proportion of hires. In contrast, when the scores

are perfectly correlated (θ = 1), equal selection has no effect on the gender proportion of hires. Under

partial correlation (0 < θ < 1), higher values of θ lead to decreasing effectiveness of the constraint.

Figure 2: Female proportion of hires (ph) vs. correlation parameter (θ)

Equal Selection

No constraint

0.0 0.2 0.4 0.6 0.8 1.0
θ

0.30

0.35

0.40

0.45

0.50

ph
Female proportion of hires (ph) vs θ

Notes: This figure plots the female proportion of hires, ph, as a function of the correlation parameter, θ. The
proportion of women in the applicant pool is fixed at pa = 0.3.

A formal proof is provided in Appendix A.2. Here, we provide an intuitive explanation. Under

equal selection, the female shortlist threshold (τSf ) is adjusted such that an equal number of women

and men are shortlisted. Since there are more men than women in the applicant pool, the shortlist

threshold for women will be lower compared to men (τSf < τSm). This means that the average QS

score of women will be lower compared to men in the shortlist. When the screening and hiring

manager scores are perfectly correlated (θ = 1), QS = QH , this translates to lower average QH

score for women. So, even though there are an equal number of male and female candidates in the

shortlist, the shortlisted female candidates will be less likely to get hired compared to the male

candidates. On the other extreme, when the two scores are perfectly uncorrelated (θ = 0), the QS

scores are independent of QH . Even though shortlisted female candidates have lower average QS

score than male candidates, they have the same average QH score. Therefore, when θ = 0, the
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probability that a female is hired equals 1
2 . In partially correlated cases, the outcomes lie between

these two extremes: the gender diversity outcomes will be worse when algorithmic and human

evaluations align closely.

Proposition 2. The female proportion of hires (ph) decreases with the gender difference in the

correlation parameter (δ).

Figure 3: Female proportion of hires (ph) vs. gender difference in correlation parameter (δ)

Equal Selection

No constraint

-0.4 -0.2 0.0 0.2 0.4
δ

0.1

0.2

0.3

0.4

0.5

ph
Female proportion of hires (ph) vs δ

Notes: This figure plots the female proportion of hires, ph, as a function of the gender difference in correlation
parameter, δ. The proportion of women in the applicant pool is pa = 0.3.

We provide the proof in Appendix A.3. The intuition is as follows: δ > 0 means that the

screening algorithm is less predictive of the hiring manager’s evaluation for female candidates, which

means lower QH scores for female candidates compared to men in the shortlist. This in turn means

that the probability of a female being hired decreases. Therefore, any gender-specific discrepancies in

evaluation consistency reduces female proportion of hires, both with and without the equal selection

constraint.

3.2.2 Effects on hire quality

Proposition 3. Conditional on the predictive accuracy of the screening algorithm (θS) and

the hiring manager (θH), the average hire quality decreases as the correlation (θ) between

algorithmic scores and hiring manager scores increases in the space θ ∈ [0,min{ θS

θH
, θ

H

θS
}], with

hire quality reaching a global maximum at θ = 0.

9



Figure 4: Expected quality of hire (E[Qh]) vs. θ, θ
S

0.0 0.2 0.4 0.6 0.8 1.0
θ

0.6

0.8

1.0

1.2

1.4

1.6

E[Qh ]
Equal Selection

θS

0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0
θ

0.6

0.8

1.0

1.2

1.4

1.6

E[Qh ]
No Constraint

θS

0

0.2

0.4

0.6

0.8

Notes: This figure plots the expected quality of hires, E[Qh], as a function of the correlation parameter, θ for different
θS values. The rest of the parameters are fixed at θH = 0.5, pa = 0.3, δ = 0.

We provide the formal proof in Appendix A.4 and provide an intuitive explanation here. The

screening score (QS) and hiring manager score (QH) act as two noisy signals providing information

about the candidate’s true quality (Q). The individual informativeness of these signals (i.e., θS , θH)

is fixed. A key principle, discussed by Clemen and Winkler (1985), states that when combining

signals, less correlated signals collectively provide more information about the underlying value

than highly correlated signals (for a fixed level of individual signal informativeness). Thus, higher

correlation leads to redundant information, reducing the overall quality gains from screening.

3.3 Implications for Algorithm Design

Our theoretical analysis offers clear guidance on designing screening algorithms to simultaneously

maximize hire quality and workforce diversity. Specifically, our findings highlight three key points:

(1) hire quality increases with the predictive accuracy of the screening algorithm (θS), (2) the

proportion of female hires decreases with increased correlation (θ) between algorithmic scores and

hiring manager evaluations under equal selection constraints (Proposition 1), and (3) conditional

on predictive accuracy (θS), higher correlation (θ) reduces expected hire quality (Proposition 3).

Therefore, the optimal strategy involves selecting screening algorithms with high θS (good at

predicting true quality) but low θ (distinct from human evaluations), making the algorithms

complementary to human assessments.
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QS

A

(1)

QH

A

(2)

Q

A

(3)

Q QH

A

(4)

Figure 5: Target variable options for training a screening algorithm A.

3.3.1 Algorithmic Selection with Independent Parameters

Consider a scenario where a firm chooses between two screening algorithm vendors. Both algorithms

are equally accurate at predicting true quality (i.e., θS1 = θS2 ) but differ in their correlation with

hiring managers’ evaluations (i.e., θ1 ̸= θ2). Such differences can arise if algorithms rely on varying

feature sets.

The firm should choose the algorithm with lower correlation (θ) to hiring manager assessments.

Despite similar predictive performance, lower correlation algorithms offer less redundant information,

thus enhancing both diversity and expected hire quality under equal selection constraints.

3.3.2 Balancing Predictive Accuracy and Managerial Complementarity

In practice, a firm often designs a screening algorithm with a fixed information source, such as

resumes, creating inherent trade-offs between predictive accuracy (θS) and complementarity to

human evaluations (θ). We outline several algorithm training strategies based on available target

variables (Figure 5 illustrates these visually):

• Option 1 (Historical Human Screener Scores): Training on historical screening scores

(QS) provides abundant data but has limited control over both θS and θ since past screening

scores are proxies, not perfect predictors of true quality.

• Option 2 (Hiring Manager Scores): Training directly on hiring manager evaluations (QH)

maximizes correlation (θ), diminishing the diversity benefits of equal selection.

• Option 3 (True Quality Scores): Training on actual job performance data (Q) maximizes

predictive accuracy (θS) but offers no direct control over managerial correlation (θ).
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• Option 4 (Multi-objective Learning): Training simultaneously on true quality (Q) and

hiring manager evaluations (QH) using techniques such as adversarial learning. This balances

high predictive accuracy and managerial complementarity, optimizing both diversity and hire

quality simultaneously.

While these practical strategies describe how different target variables affect predictive accuracy

and managerial correlation, it is also crucial to consider theoretical limitations in simultaneously

optimizing these parameters when the overall information available is fixed.

We now specifically examine this scenario, where the total information regarding true candidate

quality (Q), conditional on the algorithm’s scores (QS) and the hiring manager’s evaluations (QH),

remains constant. Formally, the information given by QS and QH about Q is given by the conditional

entropy H(Q|QS , QH) which is:

H(Q|QS , QH) =
1

2
· log

2eπ ·Det

([
1 θS θH

θS 1 θ
θH θ 1

])
1− θ2

 (3.3)

Under these fixed-information conditions, any attempt to maximize predictive accuracy (θS) will

inherently constrain efforts to reduce correlation (θ) and vice versa. If we express θS as a function

of θ, with fixed information H0, we get:

θS = θ · θH ±
√

(1− (θH)2) · (1− θ2)− (1− θ) e2H0

2eπ
(3.4)

Figure 6 demonstrates these trade-offs, showing pairs of (θ, θS) that yield constant information.

Maximizing θS initially enhances predictive performance, but further reductions in correlation (θ)

inevitably decrease θS . But, notably, even after reaching peak θS , further reducing θ can still

increase expected hire quality due to the reduction in redundant information in a single stage.6

6Decreasing θ affects the expected quality of hires via two channels: (1) there is a direct effect of θ, where decreasing
θ increases E[Qh], and (2) there is an indirect effect via θS , where decreasing θ also decreases θS , which in turn
decreases E[Qh]. Interestingly, the net effect of decreasing θ still increases E[Qh] even though θS is simultaneously
decreasing—meaning that the direct increase in E[Qh] due to the decrease in θ offsets the indirect decrease in E[Qh]
due to decreasing θS .
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Figure 6: Simultaneously optimizing θS and θ with fixed information about Q

3

 value pairs with fixed information about (θ, θS) Q  vs.  with fixed information about E[Qh] θ Q

Decreasing 
(θ, θS)

θH

0.3
0.5
0.7

θS

θ θθ

E[Qh]
max θS

Increasing 
E[Qh]

Notes: The left panel plots equal-information (θ, θS) pairs yielding the same conditional entropy
H(Q|QS , QH) = 0.5. The ’x’ marks the point where θS is maximized. The right panel plots expected hire
quality E[Qh] as a function of θ using these equal-information pairs. θH is held fixed at θH ∈ 0.3, 0.5, 0.7.

3.3.3 Directly Minimizing Gender Differences in QH Scores

Another approach is to directly minimize gender differences in QH scores in the shortlist. This can

be implemented by training two predictors—one for Q and another for QH—and then shortlisting

candidates with high predicted Q scores while minimizing gender differences in predicted QH scores.

This approach deliberately selects male and female candidates with similar hiring manager

scores, maximizing the likelihood of gender-balanced hiring. While not minimizing θ to zero (and

thus not maximizing hire quality to the fullest extent), this method effectively balances diversity

and quality goals while being simpler to implement than adversarial approaches.

In summary, the firm’s goal in algorithm design should be to create a screening system that

complements, rather than replicates, managerial evaluations, thereby maximizing both quality and

diversity outcomes under equal selection constraints.

4 Data and Empirical Methodology

Our theoretical analysis demonstrates that the effectiveness of the equal selection constraint depends

significantly on parameters such as the correlation between screening algorithms and hiring manager

evaluations (θ), and gender differences in these evaluations (δ). The optimal screening algorithm is

one that is trained on both true quality and the hiring manager’s assessment of quality. However, in

practice, screening algorithms are typically trained on historical human screening decisions rather
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than true job performance, primarily due to data availability.7 This raises an empirical question:

if firms train screening algorithms based on historical recruiter decisions, how effective will equal

selection constraints be in improving diversity outcomes?

In this section, we describe our empirical approach to addressing this question. We estimate

model parameters using actual hiring data from multiple firms, and then use these parameters

to estimate the effectiveness of equal selection constraints across different job contexts. We also

benchmark these outcomes against our proposed complementary screening algorithm and other

commonly used fairness metrics using simulation.

4.1 Data Description

We use Applicant Tracking System (ATS) data from eight U.S.-based technology companies, provided

by an HR analytics software vendor. This dataset includes detailed records for 799,000 external

job applicants (60% male, 40% female) across 3,608 unique job postings. Each record captures

candidate attributes (such as gender and experience), resumes, job posting details, and outcomes at

each hiring stage (screening, first interview, subsequent interviews, and offers).

Table 3 summarizes the number of applicants and job postings by job category. Although specific

hiring processes can vary slightly across firms, the typical hiring sequence for external applicants, as

shown in Figure 7, involves four main stages: Screening, First Interview, Subsequent Interviews,

and Offer. Initially, applicants undergo a screening stage. Those who pass the screening proceed to

the first interview stage, followed by subsequent interviews, and finally receive an offer if selected.8

On average, a typical job posting attracts 233 applicants, with about 36 advancing past the initial

screening, approximately 7 candidates progressing beyond the first interview, and around 2 receiving

offers.

7For example, LinkedIn Recruiter’s recommendation algorithm is trained on the human recruiter’s decisions since
it has no visibility into the true job performance of the candidates.

8For our empirical analysis, we specifically focus on two critical stages: the initial screening stage—where the
equal selection constraint is applied—and the subsequent first interview stage. Although the actual hiring process
is multi-staged, this simplified focus remains appropriate. To illustrate, consider a scenario with an applicant pool
comprising 70% males and 30% females. With an equal selection constraint, the shortlisted candidates following the
screening stage would consist of an equal gender split (50/50). However, the hiring manager in the first interview
stage might partially reverse this constraint, resulting in a gender ratio such as 60/40. Provided that selections in
subsequent stages are unbiased—a central assumption in our theoretical model—this revised gender ratio would persist
throughout the remainder of the hiring process.
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Table 3: Number of applicants and job postings by job category

Job Category N Applicants N Jobs

Engineering & Technical 214,943 1,178
Product & Design 130,669 534
Sales & Marketing 92,559 391
Legal & PR 75,955 332
Other 70,864 53
Finance & Accounting 69,536 308
Biz Dev & Operations 51,523 299
Human Resources 48,122 246
Customer Service & Acct Management 42,199 238

Overall 799,108 3,608

Figure 7: Hiring funnel

Screening First 
Interview

Subsequent 
Interview(s) Offer

4.2 Empirical Strategy

Our empirical approach consists of three key steps:

Step 1: Estimating Screening and Hiring Manager Scores. The Applicant Tracking

System (ATS) provides only binary outcomes (screening and interview decisions). To analyze the

effectiveness of equal selection constraints, we first derive continuous quality scores for both the

screening and hiring manager stages. We achieve this by training two machine learning (ML) models

separately: one predicting screening decisions and the other predicting hiring manager decisions,

using candidate resume texts and job descriptions as inputs. Further technical details about these

models are discussed in Section 4.3.9

We employ BigBird, a transformer model specifically optimized for processing long text docu-

ments (Zaheer et al. 2020). To address selection bias arising from observing hiring manager decisions

only for shortlisted candidates, we apply inverse propensity weighting to re-weight observations

based on their probability of passing the screening stage. This provides unbiased estimates of hiring

9Note that we observe binary screening decisions and not the assessed scores by the screener and we observe binary
hiring manager decisions only for shortlisted candidates. By building the ML models, we can infer continuous quality
scores for all candidates and all stages.

15



manager evaluations for all candidates.

Predicted decision probabilities from the ML models are converted into quality scores using a

Gaussian copula transformation, aligning with our theoretical assumption of multivariate Gaussian

distributions for quality scores.10 We show in Appendix C that the Gaussian copula has good

goodness-of-fit measures on our empirical data compared to other copulas. The predicted probabilities

are then transformed into quality scores via quantiles:

q̂Si,j = Quantile(p̂Si,j , p̂
S
j ), (4.1)

q̂Hi,j = Quantile(p̂Hi,j , p̂
H
j ). (4.2)

Step 2: Parameter Estimation (θ and δ). Using the recovered continuous quality scores, we

estimate the critical parameters:

• Correlation Parameter (θ): We estimate the correlation between screening scores and

hiring manager evaluations for each job posting using the Spearman rank correlation coefficient.

This measure is robust to transformations and widely used in practice.11

θ̂j = Spearman(q̂jS , q̂Hj ). (4.3)

• Gender Difference Parameter (δ): We calculate the difference in correlation between male

and female candidates’ evaluations for each job posting.

These parameters are aggregated across job postings, weighted by the number of applicants per

job, to derive representative average values. The rest of the parameters (pa, τ
S , τH), are observed

directly from the data.12

10Gaussian copulas are multivariate Gaussian distributions, whose marginals are uniformly distributed. They offer
a flexible way to disentangle multivariate Gaussian distribution as a product of uniform marginal distributions and a
Gaussian copula that “couples” them (See Joe (2014) and Nelsen (2007) for a reference on copulas). Formally, the
joint empirical distribution of quality scores (q̂, q̂S , q̂H) has CDF Fq̂,q̂S ,q̂H (x, y, z; Σ) = C(Fq̂(x), Fq̂S (y), Fq̂H (z)). Here,
C is the 3-dimensional Gaussian copula, C(u, v, k) = Φ(Φ−1(u),Φ−1(v),Φ−1(k)), and Φ is the CDF of a multivariate
Gaussian distribution. This transformation ensures that we stay close to the theoretical model, which assumes that
the quality scores have a multivariate normal distribution.

11Using pearson correlation leads to highly similar results.
12We set the job-specific shortlist and hiring manager thresholds based on the actual size of the shortlist and finalist

observed in the data. In doing so, we conceive the thresholds as exogenous variables. For example, the firm may have a
limited budget to interview candidates and can only afford to interview a certain number of candidates. The shortlist
and hiring manager threshold is therefore set based on the observed size of the shortlist and finalist respectively.
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Step 3: Counterfactual Policy Simulation. Using the estimated parameters, we conduct

counterfactual simulations to evaluate the effectiveness of equal selection constraints in enhancing

workforce diversity. We compare the performance of these constraints against our proposed comple-

mentary screening algorithm and other widely adopted fairness criteria, allowing us to empirically

demonstrate their relative effectiveness.

4.3 ML Model Details and Performance

To train the screening and hiring manager models, we consolidate each candidate’s resume with

relevant job information—such as company name, job title, business unit, employment type, location,

skills, and keywords—into a unified input document. The skills and keywords are sourced from a

comprehensive skills dictionary developed through an extensive analysis of LinkedIn profile data.

We partition the dataset into training (80%), validation (10%), and hold-out test sets (10%),

stratifying by job postings to ensure representativeness and robust model evaluation. We follow

Sun et al. (2019) for picking the optimal hyperparameters and select them based on validation

performance (area under the ROC curve): Epochs=3, Batch Size=14, Learning Rate=2e-5,

Weight Decay=2e-5.

The screening model training/evaluation set consists of 725,351 observations, with a hold-out

test set of 73,757 observations. The hiring manager model training/evaluation set includes 106,419

observations, with a hold-out test set comprising 11,357 observations.

Model evaluation indicates strong predictive performance: the screening model achieves an AUC

score of 0.83, while the hiring manager model achieves an AUC of 0.68. We see no significant

differences in predictive performance between male and female candidates. Additional model

performance details can be found in Appendix B.

4.4 Inverse Propensity Weighting

Since hiring manager decisions are only available for candidates who have passed the screening

stage, we employ inverse propensity weighting to mitigate selection bias. Specifically, candidates

less likely to be shortlisted (based on screening predictions) receive higher weights, while those more

likely receive lower weights. This adjustment ensures unbiased estimation of hiring manager scores

across the full applicant pool as long as there is noise in the selection process (see Cowgill (2020)).
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Figure 8: Distribution of parameter estimates across job postings
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Table 4: Average parameter estimates

Job Category θ̂ δ̂

Finance & Accounting 0.493 -0.019
Engineering & Technical 0.449 -0.009
Sales & Marketing 0.442 0.003
Product & Design 0.441 0.031
Customer Service & Acct Management 0.436 -0.02
Biz Dev & Operations 0.413 -0.014
HR 0.403 -0.074
Legal & PR 0.348 -0.016
Other 0.245 -0.332

Average 0.434 -0.007

Notes: This table reports the average parameter estimates for each
job category. We estimate the parameters at the job posting level and
aggregate it up to the job category level for all jobs in the hold-out test
set.

5 Empirical Results

This section presents empirical findings based on our analysis of the hold-out test set.

5.1 Parameter estimates

We estimate model parameters (θ, δ) separately for each job posting, using the methodology in

Section 4.2, and plot their distribution in Figure 8. Table 4 reports average parameter values

aggregated by job category.

The average correlation parameter estimate, θ̂, is 0.43, but varies considerably across jobs.
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Higher correlation is typically observed in technical roles requiring “hard skills” (e.g., Finance &

Accounting, Engineering & Technical). In contrast, lower correlation occurs in roles emphasizing

“soft skills” (e.g., HR, Legal & PR). A likely explanation is that hard skills are more readily assessable

from resumes, thus aligning screener and hiring manager evaluations more closely.

Regarding gender differences, the overall average estimate for δ is -0.007, suggesting that, on

average, the screening criteria align similarly for men and women.13 But, there is substantial

variability across job postings, with estimates ranging from -0.4 to 0.2.

5.2 Effectiveness of the Equal Selection Constraint

We estimate the impact of equal selection constraints using counterfactual simulations. For each

job posting with underrepresented female applicants (pa < 0.5), we simulate outcomes using the

estimated job-specific parameters.

Table 6 reports the aggregate results by job category. The equal selection constraint raises

the proportion of women from an average of 31% in the applicant pool to 50% in the shortlist

(by design). However, this proportion decreases to 41% among finalists, showing a modest overall

improvement.

The effectiveness varies notably across job categories. For example, Engineering & Technical

roles achieve only a 36% representation of women in the finalist stage, indicating limitations in

equal selection effectiveness in highly technical fields.

5.3 Test of propositions

We next exploit the variation in parameter estimates across jobs to empirically test Proposition 1

and Proposition 2 using the following regression specification:

ph,j = β0 + β1pa,j + β2θj + β3θ
2
j + β4δj + β5δ

2
j + ϵj (5.1)

where ph,j is the estimated proportion of women in the finalist pool for job j, pa,j is the observed

proportion of women in the applicant pool for job j, θj and δj are the estimated correlation and

13Note that the “Other” category has a high estimate of δ, but this is likely due to the small sample size (only 214
applicants in this category in the hold-out test set).
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Table 5: Empirical test of propositions

No Constraint Equal Selection
Model: (1) (2)

Variables
pa 1.359∗∗∗ 1.023∗∗∗

(0.1402) (0.1400)
θ -0.2409 -0.7005∗∗

(0.2757) (0.2754)
θ2 0.2035 0.6057∗∗

(0.2840) (0.2837)
δ -0.3333∗∗∗ -0.2896∗∗∗

(0.0635) (0.0634)
δ2 0.0626 0.0102

(0.0858) (0.0857)
Constant 0.0089 0.2784∗∗∗

(0.0859) (0.0858)

Fit statistics
Observations 254 254
R2 0.33790 0.24751

Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table reports the OLS estimates of specification 5.1 with (Model (2)) and without the equal selection
constraint (Model (2)). The outcome variable is the proportion of women in the finalist pool, ph. The independent
variables are the proportion of women in the applicant pool, pa, the correlation between screening and hiring manager
scores, θ, and the gender difference in correlation, δ.

gender difference parameters for job j respectively. We include the squared terms of θj and δj to

capture non-linear relationships.

We estimate the model using the hold-out test set with and without the equal selection constraint

and report the results in Table 5.

Consistent with the theoretical predictions, we find a negative relationship between θ and ph

under the equal selection constraint and a negative relationship between δ and ph with and without

the equal selection constraint.

5.4 Benchmarking Screening Algorithms and Fairness Constraints

We benchmark the equal selection constraint against other fairness criteria and our proposed

complementary screening approach. Specifically, we evaluate seven screening algorithms:
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Table 6: Estimated effectiveness of the equal selection constraint

Job Category Equal Selection Applied pa Screened ps Hired ph

Biz Dev & Operations False 0.38 0.38 0.38
True 0.38 0.50 0.45

Customer Service & Acct Management False 0.38 0.38 0.38
True 0.38 0.50 0.47

Engineering & Technical False 0.23 0.23 0.23
True 0.23 0.50 0.36

Finance & Accounting False 0.35 0.35 0.35
True 0.35 0.50 0.45

HR False 0.41 0.41 0.41
True 0.41 0.50 0.46

Legal & PR False 0.35 0.35 0.35
True 0.35 0.50 0.44

Product & Design False 0.33 0.33 0.33
True 0.33 0.50 0.43

Sales & Marketing False 0.36 0.36 0.36
True 0.36 0.50 0.44

Overall False 0.31 0.31 0.31
True 0.31 0.50 0.41

Notes: This table reports the proportion of women in the applicant pool pa, shortlist ps and hired pool ph — with
and without the equal selection constraint. pa is observed in the data. ps and ph are estimated by first estimating the
job-specific model parameters (θ̂j , δ̂j), and imputing the model parameters into the theoretical model. We estimate at
the job posting level and aggregate it up to the job category level for all jobs with pa < 0.5 in the hold-out test set.

1. No Constraint: Baseline without fairness constraints.

2. Equal Selection: Equal gender representation in the shortlist.

3. Demographic Parity: Shortlist gender proportions match applicant pool proportions.

4. Error Rate Parity: Equal error rates for men and women.14

5. Equalized Odds: Equal true and false positive rates across genders.

6. Equal Selection min QS Diff: Equal selection while minimizing gender differences in
screening scores.

7. Complementary Equal Selection: Equal selection while minimizing gender differences in
hiring manager scores.

We assess the impact of each screening algorithm on both diversity and expected hire quality

through agent-based hiring simulations. In these simulations, ML models for screening and hiring

14We use fairlearn’s implementation https://fairlearn.org/v0.10/user_guide/mitigation/reductions.html

21

https://fairlearn.org/v0.10/user_guide/mitigation/reductions.html


Table 7: Screening algorithms

Screening Algorithm Constraint

No Constraint None

Equal Selection P(g = f |ŷS = 1) = P(g = m|ŷS = 1)

Demographic Parity P(ŷS |g = f) = P(ŷS |g = m)

Error Rate Parity P(ŷS ̸= yS |g = f) = P(ŷS ̸= yS |g = m)

Equalized Odds
P(ŷS = 1|yS , g = f) = P(ŷS = 1|yS , g = m),

yS ∈ {0, 1}

Equal Selection min QS Diff.
P(g = f |ŷS = 1) = P(g = m|ŷS = 1)

minE[q̂Ss |g = f ]− E[q̂Ss |g = m]

Complementary Equal Selection
P(g = f |ŷS = 1) = P(g = m|ŷS = 1)

minE[q̂Hs |g = f ]− E[q̂Hs |g = m]

Notes: This table summarizes the screening algorithms used for benchmarking. ŷS is the predicted screening outcome,
and yS is the true screening outcome observed in the data. q̂Ss is the predicted screening score of the shortlisted
candidates, and q̂Hs is the predicted hiring manager score of the shortlisted candidates. The primary objective of all
the algorithms is to shortlist candidates with the highest screening score.

manager evaluations serve as agents. The screening agent shortlists the candidates with the highest

screening scores, q̂S , while satisfying the constraint outlined in Table 7, and the hiring manager

agent selects the candidates with the highest hiring manager scores, q̂H . Unlike the theoretical

model, these simulations do not assume identical quality distributions for men and women, unbiased

hiring managers, or normal distributions, making them robust to potential real-world deviations.

Simulating true quality Q. To measure the expected hire quality (unobservable in actual data),

we generate semi-synthetic quality scores for candidates based on different assumed values of θS

and θH , while holding the empirically estimated correlation θ fixed.15 We present the results from

these simulations in Figure 9.

Our results demonstrate significant variability in the diversity outcomes among the algorithms:

• The Complementary Equal Selection algorithm consistently achieves the highest diversity

of hires, surpassing all other constraints, including the Equal Selection min QS Diff.

This performance advantage arises because it directly aligns shortlisted candidates to be

15For each job we observe the vectors qS
j and qH

j , which fixes θ. To generate q, we first generate a random vector.
We then orthogonalize it with respect to qS

j and qH
j . We then transform the vector for a given value for θS and θH .

This produces a random vector qj that has the defined correlation structure Σ.
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Figure 9: Quality and diversity of hires using different screening algorithms
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Notes: This figure plots the expected quality of hires (y-axis) and the proportion of women in the hired pool (x-axis)
for different screening algorithms using agent-based hiring simulation experiments. We use semi-synthetic data for
true quality Q. Each grid in the facet corresponds to a different θS and θH value. Error bars in both the x and y axes
represent bootstrapped 95% Error bars are not visible because they are narrow.

complementary to the hiring manager’s evaluation criteria, ensuring greater diversity in the

actual hires.

• Algorithms based on Demographic Parity, Error Rate Parity, and Equalized Odds

do not substantially enhance diversity compared to the baseline. Demographic Parity

actually reduces diversity since, empirically, women had higher shortlisting rates in our training

data (see Appendix C.2), a disparity eliminated by enforcing equal representation with the

applicant pool. Likewise, Error Rate Parity and Equalized Odds have limited effect

because our ML models exhibit minimal to no gender differences in error rates or ROC curves

(as confirmed in Appendix C.2 and Appendix B).
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• While the Complementary Equal Selection approach significantly improves diversity,

it does so with minimal reduction in the expected quality of hires, particularly under lower

values of θS and θH .

6 Discussion and Conclusion

This paper examines the effectiveness of diversity policies implemented as algorithmic fairness

constraints within Human+AI hiring systems. We develop a theoretical model of the hiring

process, showing that the success of a common diversity policy—equal selection in the shortlist—is

contingent upon key parameters such as the correlation between the screening algorithm’s and the

hiring manager’s assessment criteria. Using real hiring data from technology firms, we empirically

estimate these parameters and evaluate the impact of equal selection through counterfactual policy

simulations.

Our findings indicate that enforcing equal selection in shortlists modestly improves gender

diversity among hires but does not achieve parity. Moreover, the effectiveness of this constraint

varies significantly across job categories. To address these limitations, we propose a complementary

screening algorithm, designed explicitly to differ from the hiring manager’s assessments, and

demonstrate its superior performance in enhancing workforce diversity compared to traditional

fairness constraints.

We highlight several critical managerial and algorithmic design implications arising from our

results:

• First, achieving gender parity at the shortlist stage does not inherently guarantee gender

parity in final hires, even if hiring managers are gender-unbiased. Without this understanding,

stakeholders may mistakenly interpret the post-shortlist disparities as biases introduced by

hiring managers, undermining trust in the fairness policy.

• Second, the effectiveness of the equal selection constraint is highly job-specific, driven by the

correlation between screener and hiring manager evaluations. Notably, technical roles requiring

measurable “hard skills” (e.g., software engineering) tend to exhibit higher correlations,

diminishing the effectiveness of equal selection precisely in fields where women are most
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underrepresented.

• Third, equal predictive accuracy of screening algorithms across genders is insufficient in multi-

stage hiring processes. It is equally important for screening algorithms to maintain gender

neutrality concerning their alignment with hiring managers’ criteria—specifically, algorithms

should exhibit no gender differences in their correlation with managerial assessments (δ = 0).

• Lastly, we show theoretically that higher correlations between screeners’ and hiring managers’

assessments not only reduce the effectiveness of equal selection constraints but also negatively

affect the expected quality of hires. This suggests a critical design insight: screening algorithms

should be constructed to complement, rather than replicate, managerial evaluations.

Limitations and Future Directions

Our recommendation—that screening algorithms should complement hiring managers’ assessments-

may encounter practical organizational challenges. Hiring managers often perceive AI tools as

substitutes to replicate their decision-making processes. Previous literature has identified similar

tensions in algorithmic hiring contexts (van den Broek et al. 2021). Future research could explore

strategies for effectively integrating AI tools explicitly designed to complement, rather than duplicate,

human judgment.

Another limitation of our model is the assumption that hiring managers do not adapt their

decision-making in response to diversity constraints. Future studies should investigate whether

introducing fairness constraints could inadvertently induce biases among previously unbiased hiring

managers. Existing psychology and management literature highlights that affirmative action

programs (AAPs) can lead to stigma and stereotyping of minority candidates, even those not

directly benefiting from AAPs (Heilman et al. 1997; Leslie et al. 2013). Given that algorithmic

fairness constraints might be perceived similarly to AAPs, further research is needed to understand

such policies’ potential psychological and organizational impacts.
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Appendix

A Proofs

A.1 Setup, Definitions, and Key Identities

We use the following definitions and identities throughout the proofs.

Setup Applicants are evaluated using the screening score (QS) in the first stage, and the hiring

score (QH) in the second. Unless otherwise specified, we assume that (δ, δS , δH , α, βS , βH) = 0; the

distribution of the scores are thus the same for men and women before any selection.

(Q,QS , QH) ∼ N


[
0 0 0

]
,


1 θS θH

θS 1 θ

θH θ 1


 (A.1)

Definitions

1. ϕ(x) is the standard normal Probability Density Function (PDF). Q,QS , QH have marginal

PDFs ϕ(q), ϕ(qS), ϕ(qH).

2. Φ(x) is the standard normal Cumulative Distribution Function (CDF). Q,QS , QH have

marginal CDFs Φ(q),Φ(qS),Φ(qH).

3. ϕ2(x, y; ρ) is the standard bivariate normal PDF evaluated at (x, y) with correlation ρ. QS , QH

have joint PDF ϕ2(q
S , qH ; θ).
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4. Φ2(x, y; ρ) is the standard bivariate normal CDF, representing P (X ≤ x, Y ≤ y) where (X,Y )

have standard normal marginal distributions with correlation ρ. QS , QH have joint CDF

Φ2(q
S , qH ; θ).

5. Φ2(x, y; ρ) is the complement of the standard bivariate normal CDF (tail distribution), rep-

resenting P (X > x, Y > y) where (X,Y ) have standard normal marginal distributions with

correlation ρ. The probability that a candidate is hired is therefore given by Φ2(τ
S , τH ; θ).

Key Identities

1. Plackett’s Identity for the derivative of the bivariate normal CDF with respect to correlation

(see Tong (2012)):

∂

∂ρ
Φ2(a, b; ρ) = ϕ2(a, b; ρ)

2. Property of the bivariate normal PDF:

ϕ2(−x,−y; ρ) = ϕ2(x, y; ρ)

This is because the exponent − (−x)2−2ρ(−x)(−y)+(−y)2

2(1−ρ2)
= −x2−2ρxy+y2

2(1−ρ2)
is unchanged.

3. Relation between univariate and bivariate normal PDFs:

ϕ(x)ϕ

(
y − ρx√
1− ρ2

)
=
√

1− ρ2ϕ2(x, y; ρ)

And similarly, by symmetry of ϕ2(x, y; ρ) = ϕ2(y, x; ρ):

ϕ(y)ϕ

(
x− ρy√
1− ρ2

)
=
√
1− ρ2ϕ2(x, y; ρ)

4. Symmetry of the univariate normal PDF: ϕ(−x) = ϕ(x).

5. Symmetry relating CDF and tail distribution: Φ2(x, y; ρ) = Φ2(−x,−y; ρ).
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A.2 Proof of Proposition 1

Proposition. The effectiveness of the equal selection constraint (ph) decreases as the correlation

(θ) between algorithmic scores and hiring manager scores increases.

Proof. The goal is to show that the derivative of female proportion of hires, ph, with respect to θ is

negative for θ ∈ [0, 1) — i.e., ∂ph
∂θ < 0 for θ ∈ [0, 1).

1. Define Female Proportion of Hires, ph(θ).

Let N(θ) = Pr(female is hired) and M(θ) = Pr(male is hired). Then:

ph(θ) =
N(θ)

N(θ) +M(θ)

N(θ) = pa

∫ ∞

τSf

Pr(QH > τH |QS = qS , θ)fQS (qS)dqS

M(θ) = (1− pa)

∫ ∞

τSm

Pr(QH > τH |QS = qS , θ)fQS (qS)dqS

where pa is the proportion of women in the applicant pool (pa < 0.5); τSf and τSm are the

screening thresholds for women and men, respectively; and τH is the hiring threshold. fQS = ϕ(qS)

is the standard normal PDF.

2. Shortlisting Thresholds under Equal Selection. Under the equal selection constraint, the

shortlisting thresholds τSf for women and τSm for men are adjusted such that the number of

shortlisted women equals the number of shortlisted men:

pa Pr(Q
S > τSf |female) = (1− pa) Pr(Q

S > τSm|male)

Let FQS be the CDF of QS . Then:

pa(1− FQS (τSf )) = (1− pa)(1− FQS (τSm))

Given pa < 0.5, then 1− FQS (τSf ) > 1− FQS (τSm), which means τSf < τSm. Women face a lower
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bar for shortlisting. In more explicit terms:

τSf = F−1
QS

(
1− 1− pa

pa
(1− FQS (τSm))

)
(A.2)

3. Conditional Hiring Probability. The conditional distribution of hiring scores is QH |QS =

qS ∼ N (θqS , 1− θ2). The probability that a candidate is hired given their screening score is:

Pr(QH > τH |QS = qS , θ) = 1− Φ

(
τH − θqS√

1− θ2

)
= Φ

(
θqS − τH√

1− θ2

)

4. Derivative of Conditional Hiring Probability. Let P (H|qS , θ) = Pr(QH > τH |QS = qS , θ).

∂P (H|qS , θ)
∂θ

= ϕ

(
θqS − τH√

1− θ2

)
· d

dθ

(
θqS − τH√

1− θ2

)

Calculating the derivative of the argument:

d

dθ

(
θqS − τH√

1− θ2

)
=

qS
√
1− θ2 − (θqS − τH) −θ√

1−θ2

1− θ2
=

qS(1− θ2) + θ(θqS − τH)

(1− θ2)3/2
=

qS − θτH

(1− θ2)3/2

So,

∂P (H|qS , θ)
∂θ

= ϕ

(
θqS − τH√

1− θ2

)
qS − θτH

(1− θ2)3/2

Since ϕ(·) > 0 and (1− θ2)3/2 > 0 for θ ∈ [0, 1), the sign depends on (qS − θτH). The derivative

is larger for larger values of qS .

5. Derivative of ph(θ). Using the quotient rule, dph
dθ has the same sign as N ′(θ)(N(θ) +M(θ))−

N(θ)(N ′(θ) +M ′(θ)) = N ′(θ)M(θ) −N(θ)M ′(θ). We want to show this is negative, which is

equivalent to showing:

N ′(θ)

N(θ)
<

M ′(θ)

M(θ)

This means the relative rate of change of the hiring probability with respect to θ is smaller for

women than for men.

6. Connecting to Thresholds. The goal is to understand how the difference in thresholds

(τSf < τSm) interacts with the derivative of the conditional hiring probability to make ph(θ)
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decrease as θ increases.

N ′(θ) = pa

∫ ∞

τSf

∂P (H|qS , θ)
∂θ

ϕ(qS)dqS

M ′(θ) = (1− pa)

∫ ∞

τSm

∂P (H|qS , θ)
∂θ

ϕ(qS)dqS

Define the “boost function” as g(qS , θ) = ∂P (H|qS ,θ)
∂θ . This function represents how much the

conditional hiring probability increases for a small increase in correlation θ, given a screening

score qS . As shown before (Step 5 of the proof), g(qS , θ) increases with qS (i.e., ∂g
∂qS

> 0).

Now, compare the integrals for N ′(θ) and M ′(θ):

• N ′(θ) involves integrating the boost function g(qS , θ) over the range qS ∈ [τSf ,∞).

• M ′(θ) involves integrating the same boost function g(qS , θ) over the range qS ∈ [τSm,∞).

• Since pa < 0.5, we have τSf < τSm. The integration range for men is shifted to include only

higher screening scores compared to the range for women.

• Because the boost function g(qS , θ) is larger for higher qS , the average value of the boost

function over the men’s integration range [τSm,∞) will be greater than its average value over

the women’s integration range [τSf ,∞). Let ḡf (θ) and ḡm(θ) represent these average boosts

for shortlisted women and men, respectively. Then ḡf (θ) < ḡm(θ).

• The overall derivatives N ′(θ) and M ′(θ) are related to these average boosts multiplied by

the respective probabilities of being shortlisted. Specifically, the average boost experienced

by shortlisted men (ḡm) is higher than that for women (ḡf ).

As θ increases, the hiring probability for men increases relatively more strongly. That is, the

higher average boost ḡm leads to M ′(θ)
M(θ) being larger than N ′(θ)

N(θ) .

Since the men’s hiring probability increases relatively faster (or decreases slower) than

the women’s hiring probability as θ increases, the proportion of women in the hired pool,

ph(θ) =
N(θ)

N(θ)+M(θ) , must decrease.

7. Conclusion. Because the relative increase in hiring probability with θ is greater for men than

for women (when pa < 0.5 and τSf < τSm), the proportion of women in the hired pool, ph(θ),

decreases as θ increases from 0 towards 1.
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A.3 Proof for Proposition 2

Proposition. The female proportion of hires (ph) decreases with the gender difference in the

correlation parameter (δ).

Proof. The proof directly comes Plackett’s identity, which is used to show a known result that for a

bivariate normal distribution with correlation ρ, Φ2(x, y; ρ) is increasing in ρ (see Tong (2012)).

The probability that a candidate is hired is:

P (QH > τH , QS > τS) = Φ2(τ
H , τS ; ρ) = Φ2(−τH ,−τS ; ρ)

where Φ2(τ
H , τS ; ρ) is the complementary joint standard normal CDF of (QS , QH) with correlation

ρ. By symmetry, we have Φ2(τ
H , τS ; ρ) = Φ2(−τH ,−τS ; ρ)

Here, ρmale = θ and ρfemale = θ − δ. Since θ > θ − δ, the probability that a female is hired

decreases with δ. Consequently, the proportion of women in the hired pool decreases with δ.

A.4 Proof for Proposition 3

Proposition. Conditional on the predictive accuracy of the screening algorithm (θS) and the hiring

manager (θH), the average hire quality decreases as the correlation (θ) between algorithmic scores

and hiring manager scores increases in the space θ ∈ [0,min{ θS

θH
, θ

H

θS
}], with hire quality reaching a

global maximum at θ = 0.

Proof. The proof is of two parts. First, the goal is to compute the derivative of the conditional

expectation of hires E[Qh] ≡ E[Q|QS > τS , QH > τH ] with respect to θ, and show that it decreases

in the specified range. Second, we show that E[Qh] is globally maximized at θ = 0

Part 1: Derivative of E[Qh]. The goal of the first part is to show that the derivative of E[Qh]

wrt θ is negative whenever 0 ≤ θ ≤ min { θS

θH
, θ

H

θS
}.

1. Conditional Expectation of Truncated Multi-Normal Distribution. Tallis (1961) shows

that the expected value of a truncated multi-normal distribution is given by:
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E[Q | QH > τH , QS > τS ] =
θH ϕ(τH)Φ

(
τS−θ τH√

1−θ2

)
+ θS ϕ(τS)Φ

(
τH−θ τS√

1−θ2

)
Φ2(τH , τS ; θ)

(A.3)

By symmetry, we have:

E[Qh] =
θHϕ(τH)Φ

(
θτH−τS√

1−θ2

)
+ θSϕ(τS)Φ

(
θτS−τH√

1−θ2

)
Φ2(−τH ,−τS ; θ)

Let N(θ) be the numerator and D(θ) be the denominator:

N(θ) = θSϕ(τS)Φ

(
θτS − τH√

1− θ2

)
+ θHϕ(τH)Φ

(
θτH − τS√

1− θ2

)
(A.4)

D(θ) = Φ2(−τS ,−τH ; θ) (A.5)

We will use the quotient rule for differentiation:

∂E[Qh]

∂θ
=

∂N
∂θ D(θ)−N(θ)∂D∂θ

[D(θ)]2

2. Derivative of the Denominator D(θ). Using Plackett’s Identity:

∂D

∂θ
=

∂

∂θ
Φ2(−τS ,−τH ; θ) = ϕ2(−τS ,−τH ; θ)

Using Identity 2:

∂D

∂θ
= ϕ2(τ

S , τH ; θ)

Let’s denote this as D′(θ) = ϕ2(τ
S , τH ; θ).

3. Derivative of the Numerator N(θ). Let the arguments of Φ(·) in N(θ) be:

kS(θ) =
θτS − τH√

1− θ2
and kH(θ) =

θτH − τS√
1− θ2
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We need the derivatives dkS
dθ and dkH

dθ . For kS(θ) = (θτS − τH)(1− θ2)−1/2:

dkS
dθ

= (τS)(1− θ2)−1/2 + (θτS − τH)

(
−1

2

)
(1− θ2)−3/2(−2θ)

=
τS(1− θ2) + θ(θτS − τH)

(1− θ2)3/2

=
τS − θ2τS + θ2τS − θτH

(1− θ2)3/2
=

τS − θτH

(1− θ2)3/2

Similarly, for kH(θ) = (θτH − τS)(1− θ2)−1/2 (by swapping τS ↔ τH in the expression for dkS
dθ ):

dkH
dθ

=
τH − θτS

(1− θ2)3/2

Now, we differentiate N(θ) using the chain rule d
dθΦ(w(θ)) = ϕ(w(θ))dwdθ :

∂N

∂θ
= θSϕ(τS)

[
ϕ(kS(θ))

dkS
dθ

]
+ θHϕ(τH)

[
ϕ(kH(θ))

dkH
dθ

]

Substitute dkS
dθ and dkH

dθ :

∂N

∂θ
= θSϕ(τS)ϕ

(
θτS − τH√

1− θ2

)
τS − θτH

(1− θ2)3/2
+ θHϕ(τH)ϕ

(
θτH − τS√

1− θ2

)
τH − θτS

(1− θ2)3/2

We use Identity 3. Let u(θ) = τH−θτS√
1−θ2

, so kS(θ) = −u(θ). And let v(θ) = τS−θτH√
1−θ2

, so kH(θ) =

−v(θ). By Identity 4, ϕ(kS(θ)) = ϕ(−u(θ)) = ϕ(u(θ)) and ϕ(kH(θ)) = ϕ(−v(θ)) = ϕ(v(θ)). So,

ϕ(τS)ϕ(kS(θ)) = ϕ(τS)ϕ

(
τH − θτS√

1− θ2

)
=
√

1− θ2ϕ2(τ
S , τH ; θ) =

√
1− θ2D′(θ)

ϕ(τH)ϕ(kH(θ)) = ϕ(τH)ϕ

(
τS − θτH√

1− θ2

)
=
√
1− θ2ϕ2(τ

H , τS ; θ) =
√
1− θ2D′(θ)
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Substituting these into ∂N
∂θ :

∂N

∂θ
= θS

(√
1− θ2D′(θ)

) τS − θτH

(1− θ2)3/2
+ θH

(√
1− θ2D′(θ)

) τH − θτS

(1− θ2)3/2

=
D′(θ)

1− θ2
[
θS(τS − θτH) + θH(τH − θτS)

]
=

D′(θ)

1− θ2
[
θSτS − θSθτH + θHτH − θHθτS

]
=

D′(θ)

1− θ2
[
(θSτS + θHτH)− θ(θSτH + θHτS)

]
Let this be N ′(θ).

4. Assembling the Derivative. Using the quotient rule formulation ∂E
∂θ = N ′(θ)

D(θ) − ED′(θ)
D(θ) :

∂E

∂θ
=

1

D(θ)

(
D′(θ)

1− θ2
[
(θSτS + θHτH)− θ(θSτH + θHτS)

])
− E

D′(θ)

D(θ)

=
D′(θ)

D(θ)

{
(θSτS + θHτH)− θ(θSτH + θHτS)

1− θ2
− E

}

Substituting back the full forms for D(θ) = Φ2(−τS ,−τH ; θ), D′(θ) = ϕ2(τ
S , τH ; θ):

∂E[Qh]

∂θ
=

ϕ2(τ
S , τH ; θ)

Φ2(−τS ,−τH ; θ)

[
(θSτS + θHτH)− θ(θSτH + θHτS)

1− θ2
− E[Qh]

]

Note that the first term inside the bracket is the conditional expectation of E[Q|QS = τS , QH =

τH ]. Rewriting the formula, we get:

∂E[Qh]

∂θ
=

ϕ2(τ
S , τH ; θ)

Φ2(−τS ,−τH ; θ)

[
E[Q|QS = τS , QH = τH ]− E[Q|QS > τS , QH > τH ]

]

5. Sign of the Derivative. Since ϕ2 > 0 and Φ2 > 0, the sign of the derivative is the same as the

sign of E[Q|QS = τS , QH = τH ]−E[Q|QS > τS , QH > τH ]. The derivative is therefore negative

whenever E[Q|QS = τS , QH = τH ] > E[Q|QS > τS , QH > τH ] — i.e., when the corner solution

is lower than the average solution in the quadrant above the thresholds.

The corner solution is guaranteed to be lower than the average whenever the conditional
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expected quality increases with thresholds:

∂

∂τS
E[Q|QS = τS , QH = τH ] > 0

∂

∂τH
E[Q|QS = τS , QH = τH ] > 0

Substituting the full form of E[Q|QS = τS , QH = τH ]:

∂

∂τS
E[Q|QS = τS , QH = τH ] =

∂

∂τS
(θSτS + θHτH)− θ(θSτH + θHτS)

1− θ2
=

θS − θθH

1− θ2
> 0

∂

∂τH
E[Q|QS = τS , QH = τH ] =

∂

∂τH
(θSτS + θHτH)− θ(θSτH + θHτS)

1− θ2
=

θH − θθS

1− θ2
> 0

This gives a bound for when the derivative is guaranteed to be negative.

0 ≤ θ ≤ min { θ
S

θH
,
θH

θS
} (A.6)

Without loss of generality, we assume that θS ≤ θH (i.e., the screener has lower quality than the

hiring manager in predicting overall quality), so the condition gets simplified to:

0 ≤ θ ≤ θS

θH
(A.7)

Intuitively, this is the setting where the screener’s correlation to predict the hiring manager’s

preferences is lower than the screener’s relative ability to predict the candidate’s actual quality

compared to the hiring manager’s ability to do so. In other words, we want the screener to be

better at predicting the true quality than it is at predicting the hiring manager’s preferences.

This completes the first part of the proof.

Part 2: Global Maximum. The goal of part 2 is to show that E[Q|QS > τS , QH > τH ]θ=0 >

E[Q|QS > τS , QH > τH ]1>θ>0.

1. Expected Quality of Hires. Using Tallis (1961) again, we have:

E[Q | QH > τH , QS > τS ] =
θH ϕ(τH)Φ

(
τS−θ τH√

1−θ2

)
+ θS ϕ(τS)Φ

(
τH−θ τS√

1−θ2

)
Φ2(τH , τS ; θ)
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2. Case when θ = 0. When θ = 0, QH and QS are independent. Then,

Φ2(τ
H , τS ; 0) = Φ(τH)Φ(τS)

This simplifies the above expression to:

E[q | h > τH , s > τS ]θ=0 =
θH ϕ(τH)Φ(τS) + θS ϕ(τS) Φ(τH)

Φ(τH)Φ(τS)
= θH

ϕ(τH)

Φ(τH)
+ θS

ϕ(τS)

Φ(τS)
(A.8)

3. Difference in expected quality ∆(θ). Define the difference in expected quality as:

∆(θ) := E[Q | QH > τH , QS > τS ]θ=0 − E[Q | QH > τH , QS > τS ]0<θ<1

This can be rearranged as:

∆(θ) = θH ϕ(τH)DH(θ) + θS ϕ(τS)DS(θ),

where

DH(θ) =
1

Φ(τH)
−

Φ(
τS − θτH√

1− θ2
)

Φ2(τH , τS ; θ)
, (A.9)

and DS(θ) is the analogous term swapping QH ↔ QS .

DS(θ) =
1

Φ(τS)
−

Φ(
τH − θτS√

1− θ2
)

Φ2(τH , τS ; θ)
,

Because θH , θS , ϕ(·) are all positive, the sign of ∆(θ) depends on the sign of DH(θ) and

DS(θ). Thus, to prove that ∆(θ) > 0 for all θ ∈ (0, 1), it is sufficient to show that DH(θ) > 0

and DS(θ) > 0 for all θ ∈ (0, 1).

4. Showing DH(θ) > 0 and DS(θ) > 0. First consider DH(θ). Multiplying both sides of A.9 by

Φ2(τ
H , τS ; θ), we get:

Φ2(τ
H , τS ; θ)DH(θ) =

Φ2(τ
H , τS ; θ)

Φ(τH)
− Φ
(τS − θτH√

1− θ2

)
.
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Note that:

Φ2(τ
H , τS ; θ)

Φ(τH)
= P (QS > τS | QH > τH),

For the second term, since in a bivariate normal distribution with correlation θ, the conditional

probability of QS | QH = τH is normal with mean θτH and variance 1− θ2, we get:

Φ
(τS − θτH√

1− θ2

)
= P (QS > τS | QH = τH).

Therefore,

Φ2(τ
H , τS ; θ)DH(θ) = P (QS > τS | QH > τH)− P (QS > τS | QH = τH).

Because Φ2(·) is positive, the sign of DH(θ) is the same as the sign of the above difference.

To show that DH(θ) > 0, we need to show that:

P (QS > τS | QH > τH) > P (QS > τS | QH = τH). (A.10)

Next, define:

g(qH) = P (QS > τS | QH = qH) = Φ
(τS − θqH√

1− θ2

)
,

Note that the right-hand side term in A.10 is the point probability that QS > τS given that

QH = τH . The left-hand side term is the average probability that QS > τS given that QH > τH

over the range of τH < QH < ∞. We can rewrite A.10 as:

E[g(qH) | qH > τH ] > g(τH).

Taking the derivative of g(qH) with respect to qH , we get:

d

dqH
g(qH) = ϕ

(
θqH − τS√

1− θ2

)
θ√

1− θ2
(A.11)

The derivative is always positive since ϕ(·) > 0 and θ > 0. Therefore, g(qH) is strictly increasing

in qH .
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Since g(qH) is strictly increasing, the expected value of g(qH) over the range of τH < qH < ∞

is greater than g(τH). Therefore, DH(θ) > 0. A symmetric argument swapping QH ↔ QS shows

that DS(θ) > 0.

It follows that ∆(θ) > 0 for all θ ∈ (0, 1). Hence,

E[Q | QH > τH , QS > τS ]0 > E[Q | QH > τH , QS > τS ]θ ∀ θ ∈ (0, 1), (A.12)

Equal Selection Constraint. The above proofs do not explicitly consider the equal selection

constraint, where the screening threshold τS differs for men (τSm) and women (τSf ). The overall

expected quality is simply a weighted average based on the proportion ph(θ) of each group in the

hired pool:

E[Qh] = ph(θ) · E[Qh,female] + (1− ph(θ))E[Qh,male]

Since A.7 and A.12 apply to each subgroup (using their specific thresholds), it extends to the overall

weighted average, completing the proof.

A.5 Difference in quality between men and women

So far we have considered the case where male and female applicants are equally qualified. We now

consider the case where female applicants can be more/less qualified than men on average. We

parametrize this difference using the location parameter α, as follows:

(Qm, QS
m, QH

m) ∼ N


[
0 0 0

]
,


1 θS θH

θS 1 θ

θH θ 1




(Qf , Q
S
f , Q

H
f ) ∼ N


[
α α α

]
,


1 θS θH

θS 1 θ

θH θ 1




(A.13)

A positive α implies that women are more qualified on average than men, and a negative α

implies the opposite.
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The probability that a candidate is hired is given by:

Pr(male is hired) = Φ2(τ
S
m, τH ; 0, θ) (A.14)

Pr(female is hired) = Φ2(τ
S
f , τ

H ;α, θ) (A.15)

where Φ2(·;α, θ) is the bivariate tail CDF of QS and QH with mean α and correlation θ.

The proportion of women in the hired pool is given by:

ph =
pa · Pr(female is hired)

pa · Pr(female is hired) + (1− pa) · Pr(male is hired)
(A.16)

We solve for this numerically, and plot the proportion of women in the hired pool ph as a function

of α and θ in Figure 10.

When women are more qualified than men (α > 0), the equal selection constraint becomes

redundant. Higher mean quality compensates for the lower proportion of women in the applicant

pool. This implies that the proportion of women in the hired pool ph increases with α. Therefore,

the equal selection constraint becomes redundant.

When women are less qualified than men (α < 0), equal selection becomes even less effective.

Figure 10: Female proportion of hires (ph) vs. quality difference parameter (α)
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Notes: This figure plots the female proportion of hires, ph, as a function of the quality difference parameter, α. The
proportion of women in the applicant pool is pa = 0.3. This result does not depend on the θS and θH parameters.

Interestingly, without the equal selection constraint, the female proportion of hires decreases

with θ when women have higher mean quality (α > 0), and vice versa when women have lower mean

quality.
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Figure 11: Female proportion of hires (ph) vs. correlation parameter (θ) for different α values
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Notes: This figure plots the female proportion of hires, ph, as a function of the correlation parameter, θ for different
values of α. The proportion of women in the applicant pool is pa = 0.3. This result does not depend on the θS and
θH parameters.

B Additional details on the ML models

B.1 Predictive performance

We measure the predictive performance of the ML models using the Area Under ROC curve (AUC)

criteria16 on the hold-out test set and report the results in Table 8.

For the screening model, the overall AUC score is 0.83, and there is no difference in AUC

scores between the male and female candidates. We also find that there is some heterogeneity in

performance across job types, as reported in Table 9.

For the hiring manager model, the predictive performance is lower compared to the screening

model since the hiring manager has more information from the interview, which we do not observe.

Nonetheless, the predictive performance based on just resume characteristics is still reasonably high

at 0.68, and there is no difference between genders. Note that the hiring manager model is evaluated

on a subset of applicants in the hold-out test set who were, in fact, shortlisted.

16AUC is a widely-used measure for predictive performance for classification models since it is agnostic to both
imbalanced classes and classification thresholds. The score ranges from 0.5 to 1, where 0.5 corresponds to a random
classifier, and 1 corresponds to a perfect classifier.
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Table 8: Predictive model performance by gender on hold-out test set

Screening Hiring Manager
Group AUC Support AUC Support

Female 0.83 31,364 0.68 4,679
Male 0.83 42,393 0.68 6,678

Overall 0.83 73,757 0.68 11,357

Notes: This table reports the predictive performance of
the screening and hiring manager classification models
on the hold-out test set broken down by male and female
candidates.

Table 9: Predictive model performance by job category on hold-out test set

Screening Hiring Manager
Job Category AUC Support AUC Support

Legal & PR 0.86 7,337 0.65 926
Product & Design 0.85 12,519 0.66 1,863
Sales & Marketing 0.85 15,169 0.67 2,120
Other 0.83 214 0.59 25
Engineering & Technical 0.82 16,506 0.66 3,315
Finance & Accounting 0.82 7,026 0.67 886
Biz Dev & Operations 0.81 4,836 0.65 628
HR 0.79 3,355 0.69 452
Customer Service & Acct Management 0.78 6,734 0.7 1,112

Overall 0.83 73,757 0.68 11,357

Notes: This table reports the predictive performance of the screening and hiring manager
classification models on the hold-out test set. We estimate the metrics at the job posting level
and aggregate up to the job category level.
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Figure 12: ROC Curves for Screening and Hiring Manager Models

(a) Screening Model ROC Curve
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(b) Hiring Manager Model ROC Curve
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C Additional empirical analyses

C.1 Measures of observable quality differences between men and women

In this section we empirically assess differences in observable quality measures between men and

women. To do so, we first identify four measures of observable quality: job-resume skill similarity,

years of experience, attended a top 100 school, and educational attainment. We operationalize these

measures as follows:

• Job-Resume skill similarity: We measure the average cosine similarity between skills listed

in the job description and the applicant’s resume. To get the cosine similarity, we first tokenize

the job description and resume text. We then filter the tokens to extract only skills-related

tokens (e.g., python, data analysis, project management) using a dictionary of skills17. We

then get the vector representation of each skill token using a custom word2vec model trained

on resumes, and take the average cosine similarity between the job description and resume

skill vectors.

• Years of experience: We get the applicant’s years of experience from the ATS.

17This dictionary was created using the skills section of LinkedIn profiles in a separate analysis.
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• Attended a top 100 school: We create a binary variable indicating if the applicant attended

a top 100 school based on the undergraduate institution listed in the resume. We use U.S.

News and World Report’s ranking of top 100 schools as the reference.

• Educational attainment: We create binary variables indicating if the applicant has a

bachelor’s, master’s, or doctorate degree based on the highest degree listed in the resume.

For each of these outcomes, we estimate a linear regression model with job posting fixed effects

yij = βFemale · Femalei + αj + ϵij

where yij is the observable quality measure for applicant i applying to job j, Femalei is a binary

variable indicating if the applicant is female, αj is the job posting fixed effect, and ϵij is the error

term.

We report the coefficients and percentage differences below. Compared to male applicants,

female applicants have roughly the same job-resume skill similarity, fewer years of experience, are

more likely to have attended a top 100 school, more likely to have a bachelor’s or master’s degree,

and less likely to have a doctorate degree.

Table 10: Regression coefficients of observable quality measures

Variable βFemale % Difference p-value

Job-Resume skill similarity 0.003 0.51% < 0.001
Yrs exp -0.53 -6.1% < 0.001
Attended top 100 school 0.013 4.66% < 0.001
Has bachelor’s degree 0.015 1.79% < 0.001
Has master’s degree 0.03 7.16% < 0.001
Has doctorate -0.004 -6.98% < 0.001

Notes: This table shows the estimated regression coefficients and percentage
differences of various observable quality measures. Job-Resume Similarity is
the cosine similarity between the job description and the resume. Yrs Exp is the
number of years of experience. Attended Top 100 School is a binary variable
indicating if the candidate attended a top 100 school. Has Bachelor’s Degree,
Has Master’s Degree, and Has Doctorate are binary variables indicating if the
candidate has a bachelor’s, master’s, or doctorate degree, respectively.
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C.2 Regression estimates on the likelihood of being shortlisted

Table 11: Likelihood of being shortlisted, OLS estimates

Dependent Variable: Shortlisted (1=YES)

Variables
Male -0.0128∗∗∗

(0.0012)
Yrs Exp 0.0012∗∗∗

(0.0002)
Job Resume Similarity 0.3918∗∗∗

(0.0107)

Fixed-effects
Job Posting Yes
School Rank Yes
Degree Yes

Fit statistics
Observations 595,246

Clustered (Job Posting) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the OLS estimates of the likelihood of being
shortlisted. Each observation corresponds to an application. Male
applicants are more likely to be shortlisted than female applicants
after controlling for job-resume skill similarity, years of experience,
education, and job posting.

C.3 Goodness of fit using different copulas

Below we provide Kolmogorov-Smirnov (KS) statistics of empirical quality scores qS and qH fit

against commonly used copulas. Lower KS statistics indicate a better fit. The Gaussian copula has

the 2nd best fit after the Frank copula.
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Table 12: Copula goodness-of-fit measures

Copula KS-Statistic p-value

Gaussian 2.62 < 0.0001
Gumbel 6.25 < 0.0001
Frank 2.29 < 0.0001
Clayton 6.07 < 0.0001
Joe 11.84 < 0.0001
AMH 5.37 < 0.0001

Notes: This table shows the goodness-of-fit
measures of empirical quality scores qS and
qH fit against various copulas.
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